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2*k!, with the understanding that for, say, m = 0
(5) reduces to (2n — D!/ 2n)!!

The above procedure can readily cope with the
calculation of {IJ1*) and (1J1%) for any space group.
This symbol-handling procedure is also much faster
than the first one. Thus, the values of {1J1*) and {1/15)
for the cubic system, the most complex one, including
separate calculations for the various Akl subsets, have
been obtained in less than 14 min on a CDC6600.
However, when the trigonometrical forms given for 4
and B need extensive rearrangements (e.g. for trigonal
and hexagonal systems), the structure-factor algebraic
procedure described above is preferable in practice.

Results

The fourth and sixth moments of the trigonometric
structure factor were computed for all 230 space
groups and the results are summarized in Table 1.

Since the symmetry-dependent coefficients required
for the evaluation of moments and distributions of the
normalized structure factor depend on the ratios g/p?
and r/p®, where p = (IJ12), g = ({J1*), r = {IJI5)
(Shmueli & Wilson, 1981), and these ratios, rather than
the individual moments, are likely to be of use, the
results are presented in their terms. Of course, g and r
can be readily found since p is given for each entry.

It was assumed throughout the calculation that all
the atoms occupy general positions and all the subsets
of hkl (except those corresponding to zones and rows),
giving rise to different functional forms of A and B,
were considered. The absence of any remark beside an
entry in Table 1 means that all the space groups and/or
all the above mentioned subsets of hk/ corresponding to
this entry lead to identical values of p, g and r.

Acta Cryst. (1981). A37, 80-84

EVEN MOMENTS OF THE TRIGONOMETRIC STRUCTURE FACTOR

In the comparison of our results for g with those
obtained by Wilson (1978) it is appropriate to point out
that his results were obtained without the aid of a
computer and that the possibility of his tables contain-
ing some errors was emphasized (c¢f. §1.7: Wilson,
1978). The comparison showed a single numerical
discrepancy (I4,/a), one inconsistent association of a q
value with an hk/ subset (P4,32) and two more g
values for P4,32 not given by Wilson (1978). Also
Wilson’s values of g for 74,32, 143d and /a3d. unlike
the other entries in his Table 3 (Wilson, 1978), are not
the average g values but coincide with ours for the ‘hk/
all even’ case. For all the rest, there is an exact
agreement regarding ¢ values for primitive space
groups and average g values for the centered ones. The
values of q for the space groups Fd3m and Fd3c, not
given by Wilson (1978), were supplied in this work.

Corresponding results for the eighth moment of |J|
can now also be computed and will be reported later.
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Abstract

Two types of twins are frequently found in naturally
and experimentally deformed kyanite. Structural
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models based on periodic shears are proposed to
account for these mechanical twins. The structure of
kyanite is then regarded as layered, the limits of each
layer being easy glide planes for dislocations. The shear
plane is (100). The shear vectors are 4 [001] and
4 [011]. They are suitable for the only known glide
system (100) [001].
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that they correspond to the twinning operations shown
in Table 2.

Table 2. Correspondence between periodic shears and
twinning operations

Twinning
operations Periodic shears
2, rotation (100), 4 [001] Observed
about [001] a twin
2, rotation (100), 4 [010] Not observed
about [010] B twin
b-glide-reflection (100), 4 [011] Observed
across (100) y twin

What is remarkable is that these three twins can be
produced by periodic shears without additional atomic
shuffles as is the case in any other example of
mechanical twins in minerals (see, for instance,
Biermann, 1980; Kirby & Christie, 1977).

+
3
=]

=]
-
=

L 2

Fig. 4. The upper part is the « twin resulting from the introduction
of the periodic shears {(100), 4 [(001}} into the kyanite matrix of
the lower part. The shear planes are labelled a and B.1is a screw
diad relating the a twin to the matrix.

3. Pseudo-symmetry and layer structure

The lattice of kyanite is pseudo-orthorhombic. A
multiple pseudo-orthorhombic unit cell can be defined
by

a,, =4a, +b +¢
b, =b,

c,=¢C.

The crystalline parameters of these cells are

a,=7-119A a,,=26-82 A
b,=17-847 by, = 7-847
¢,=5572 Cpo=5-572
a,=89-98° a,, =89-98°
B,=101-12 B,, = 89-92
¥, = 10601 ¥po = 90-01.

apo

Fig. 5. (001) idealized projection of the pseudo-orthorhombic cell.
The stacking sequence involves four layers 4, B, C and D. The
b-glide-mirror of the B layer is the only one labelled.
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Fig. 5 is a (001) projection of this pseudo-ortho-
rhombic cell. It shows that the kyanite structure can be
regarded as a periodic stacking of layers A, B, C and D
(the layers are limited by the glide planes mentioned
above). 4, B, C and D refer to the four possible layer
positions in a projection normal to [100],, (going from
any layer to its two neighbours requires the vectors

+4[1111,,). The introduction of the 34[011], =
41011}, shear between for instance the B and C layers
turns the

...CDABCDAB...
stacking into

...CDAB/ABCD....

In the unfaulted crystal, the first-neighbouring layers of
B are A and C. For the B layer that is on the left of the
stacking fault, the first-neighbouring layers are 4 and
A: that is why this fault is thought to be a low-energy
one.

Introduction of the periodic shears {(100), {011}
on the right of the dotted line turns the stacking

...ABCDABC:DABCDAB...
into

...ABCDABC:BADCBAD....
1

The latter stacking has a symmetry plane, indicated by
the arrowed layer; this plane can only be a symmetry
plane relating the two crystals on either side of the
dotted line if each layer has its own symmetry plane:
this is what Fig. 5 shows. Thus a y twin has been
created. One can also notice that the matrix and the y
twin share a common layer (the arrowed C layer in the
above example).

Conclusions

The slightly distorted f.c.c. oxygen sublattice of kyanite
is not altered by 4 [001] and 4 [011] stacking faults; as
much can be said about mechanical twins which have

been described by the introduction of these periodic
stacking faults in the kyanite matrix.

The structural models proposed for the stacking
faults and the twins are based on the fact that the
structure of kyanite is of the layered type. Out of the
three considered twins leading to low-energy interfaces,
only two have been observed (a and y). We think that
the f twins have not been observed because they cannot
be mechanically created by ¢ dislocations. Experiments
are now being conducted to prove this hypothesis.

We are indebted to Professor J. Paquet (Université
de Lille I) and Dr B. Lasnier (Université de Nantes) for
providing the samples of kyanite. We thank Professor
J. C. Doukhan for very helpful discussions.
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