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2kk!, with the understanding that for, say, m = 0 
(5) reduces to (2n - 1)!!/(2n)!! 

The above procedure can readily cope with the 
calculation of (IJI 4) and ( IJI  6) for any space group. 
This symbol-handling procedure is also much faster 
than the first one. Thus, the values of (IJI  4) and (IJI  6) 
for the cubic system, the most complex one, including 
separate calculations for the various hkl subsets, have 
been obtained in less than 1½ min on a CDC6600.  
However, when the trigonometrical forms given for A 
and B need extensive rearrangements (e.g. for trigonal 
and hexagonal systems), the structure-factor algebraic 
procedure described above is preferable in practice. 

Results  

The fourth and sixth moments of the trigonometric 
structure factor were computed for all 230 space 
groups and the results are summarized in Table 1. 

Since the symmetry-dependent coefficients required 
for the evaluation of moments and distributions of the 
normalized structure factor depend on the ratios q/p2 
and r/p 3, where p = (IJI2),  q = (IJI4),  r = (IJI  6) 
(Shmueli & Wilson, 1981), and these ratios, rather than 
the individual moments, are likely to be of use, the 
results are presented in their terms. Of course, q and r 
can be readily found since p is given for each entry. 

It was assumed throughout the calculation that all 
the atoms occupy general positions and all the subsets 
of hkl (except those corresponding to zones and rows), 
giving rise to different functional forms of A and B, 
were considered. The absence of any remark beside an 
entry in Table 1 means that all the space groups and/or 
all the above mentioned subsets of hkl corresponding to 
this entry lead to identical values ofp, q and r. 

In the comparison of our results for q with those 
obtained by Wilson (1978) it is appropriate to point out 
that his results were obtained without the aid of a 
computer and that the possibility of his tables contain- 
ing some errors was emphasized (cf. §1.7: Wilson, 
1978). The comparison showed a single numerical 
discrepancy (I41/a), one inconsistent association of a q 
value with an hkl subset (P4~32) and two more q 
values for P4132 not given by Wilson (1978). Also 
Wilson's values of q for I4132, I43d and la3d, unlike 
the other entries in his Table 3 (Wilson, 1978), are not 
the average q values but coincide with ours for the 'hkl 
all even' case. For all the rest, there is an exact 
agreement regarding q values for primitive space 
groups and average q values for the centered ones. The 
values of q for the space groups Fd3m and Fd3c, not 
given by Wilson (1978), were supplied in this Work. 

Corresponding results for the eighth moment of IJI 
can now also be computed and will be reported later. 
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Abstract  

Two types of twins are frequently found in naturally 
and experimentally deformed kyanite. Structural 

* Present address: Service Thermique, DERC Ferodo, 4, rue 
Gambetta, 93406 St Ouen, France. 

0567-7394/81/010080-05501.00 

models based on periodic shears are proposed to 
account for these mechanical twins. The structure of 
kyanite is then regarded as layered, the limits of each 
layer being easy glide planes for dislocations. The shear 
plane is (100). The shear vectors are ½ [001] and 
½ [011]. They are suitable for the only known glide 
system (I00)[001 ]. 

(c) 1981 International Union of Crystallography 
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Introduction 

Twins in kyanite have been known by mineralogists for 
a long time I see, for instance, Deer, Howie & Zussman 
(1978) and Table 11. Although two of them ((~ and 7) 
were found in experimentally deformed samples (Bo- 
land, Hobbs & MacLaren,  1977) these twins have not 
yet been studied by electron microscopy and no 
structural model has been produced to account for 
them: that is the intention in this paper. 

Table 1. Twins in kyanite 

Twins Twinning operations 

- Diad rotation about [001] 
fl Diad rotation about [0101 
7 Reflection across (100) 

and the vectors a c, bc and c~ of the oxygen sublattice 
unit cell is as follows: 

[a I Ii2 J2 lLc] b t = 2 be . 
_ 

_C t 0 c 

(b) Covalent approach (N6ray-Szab6 et al., 1929) 

The structure of kyanite is characterized by chains of 
A 1 0  6 edge-sharing octahedra extending parallel to the c 
axis. These chains are linked by AIO 6 octahedra and 
SiO 4 tetrahedra (Fig. 1). They are of special interest 
because similar arrangements are found in the other 
two AI2SiO 5 polymorphs, andalusite and sillimanite. 

Experimental 

Crystallography of kyanite 

The structure of kyanite was determined by Nfiray- 
Szabo, Taylor & Jackson (1929) and then refined by 
Burnham (1963); it is triclinic with space group P1. 
This structure can be described in two different ways. 

(a) Ionic approach (Bragg & West, 1927) 

It can be considered as a slightly distorted f.c.c. 
oxygen sublattice with AI 3+ cations in octahedral 
interstices and S i  4+ cations in tetrahedral interstices. 
Leaving aside the triclinic distortion of the oxygen 
sublattice, we find that the orientation relationship 
between the vectors a t, b t and c t of the triclinic unit cell 

Kyanite crystals from Lesotho xenolithic eclogites and 
a quartzo feldpatic gneiss (Brioude, Massif Central, 
France) were used. Thin foils suitable for transmission 
electron microscopy were prepared by ion 
bombardment.  

Two types of planar stacking faults were commonly 
observed in the vicinity of twins. They are parallel to 
(100). The displacement vectors are ½ [001] and ½ [011]. 
The ½[001] stacking faults correspond to the [001] --, 
½[0011 + ½[0011 dissociation of e dislocations found by 
Boland et al. (1977) and M+nard, Doukhan & Paquet 
(1977). Fig. 2 shows ½[011] stacking faults with 

t o ,J t 

Fig. 1. Idealized projection of kyanite on a plane normal to [0011. 
A I O  6 chains parallel to 10011 are shown as stippled octahedra: 
the heights of the AI ions in these chains are 0 and c/2 (black 
triangles) or c/4 and 3c/4 (white triangles). The heights of the 
ions in the other polyhedra are given as multiples of c/4:<q> 
A 1 0  6 ovtahedra; ~ SiO4 tetrahedra. The easiest glide plane in 
the cel! is arrowed. 

Fig. 2. ½10111 stacking faults in Lesotho kyanite. Weak beam, g = 
030. 
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lengths that can be very different. The two partial 
dislocations bounding each fault have different con- 
trast, which indicates that they have different Burgers 
vectors; these vectors have not yet been clearly 
identified. They probably correspond to the following 
dissociation: 

[OOl] -,½ [Oll] + ½ [Oil]. 

Only two types of twin were found, a and 7. The 
thickness of these twins is very variable (from a few 
hundred hngstr6ms to a few micrometres). The habit 
planes are always parallel to (100). Fig. 3 shows an 
~-twin tip: twinning dislocations (Burgers vector 
½1001 l) can be seen in the matrix-twin interface. 

periodic shear mechanisms for which we will define the 
planes, vectors and periods as well as their location in 
the kyanite cell. 

1. Periodic shears 

(a) Shear plane. The only dislocation glide system 
known for kyanite is (100)[001] (Raleigh, 1965; 
Boland et al., 1977; M~nard, Doukhan & Paquet, 
1979) and the matrix-twin interface is always parallel 
to (100). Thus we selected the (100) plane as shear 
plane in both cases. 

(b) Shear vectors. The shortest shear vectors suitable 
for the glide system (100) [0011 are ½ [001] and ½ [011]. 
They could correspond to the following dissociations: 

Structural interpretation 

When referred to the oxygen sublattice pseudo-cubic 
cell, the displacement vectors of the stacking faults 
described above are ½ [i01] c and ½ [i21]c; thus the 
oxygen sublattice is not altered by these faults. 

The two types of twins correspond to those that 
Boland et al. (1977) produced by experimental defor- 
mation; we will consider them mechanical twins. Our 
structural interpretation of these twins is based on 

Fig. 3. ~-twin tip in Massif Central kyanite. Dark field, g = 2 0 2  M = 

302 r. The ½[00 I] stacking faults are out of contrast and arrowed. 
M matrix; T twin. 

[001] --, ½ [001] + ½ [001] 

[001] -,½ [011] + ½[0ill .  

These two vectors are also the displacement vectors 
of the stacking faults described in the previous 
paragraph. 

(c) Shear location. Fig. 1 is the projection of an 
idealized kyanite structure on a plane normal to the 
[001] row; this structure is idealized because it 
corresponds to the atomic positions given by N/lray- 
Szab6 et al. (1929) and does not take into account the 
structure refinement of Burnham (1963). The most 
likely glide plane for dislocations is shown in Fig. l: it 
does not cut the Si-O bonds and does not alter the 
A106 octahedra chains (M~nard et al., 1977). The 
layers between these easy glide planes can be con- 
sidered the most stable structural units in the kyanite 
structure inasmuch as they are also found in such 
structures as those of yoderite (Fleet & Megaw, 1962) 
and staurolite (N~ray-Szab6 et al., 1929; Griffen & 
Ribbe, 1973). 

(d) Shear period. This quite naturally follows from 
what has just been said. It is the distance between easy 
glide planes, viz dlo o, the reticular distance of the (100) 
planes. 

2. Mechanical twins 

Fig. 4 shows the a twin resulting from the introduc- 
tion of the periodic shears {(100), ½ [001]} in the 
kyanite structure: this twin and the matrix are related 
by a screw diad rotation along [001] (or by a mirror 
reflection across the plane normal to [001]. It can also 
be noticed that the twin and the matrix share a 
complete layer; the corresponding interface must be a 
low-energy interface, which accounts for the observed 
habit plane parallel to (100). In the same way, we can 
obtain the twins corresponding to the {(100), ½ [010]} 
and /(lO0); ½ [011]} periodic shears and demonstrate 
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that they correspond to the twinning operations shown 
in Table 2. 

Table 2. Correspondence between periodic shears and 
twinning operations 

Twinning 
operations Periodic shears 

21 rotation (100), ½ [001] Observed 
about 1001] ~l twin 

21 rotation (100), ½ [010] Not observed 
about 10101 fl twin 

b-glide-reflection (100), ½ [011] Observed 
across (100) y twin 

What  is remarkable is that these three twins can be 
produced by periodic shears without additional atomic 
shuffles as is the case in any other example of 
mechanical twins in minerals (see, for instance, 
Biermann, 1980; Kirby & Christie, 1977). 

3. Pseudo-symmetry and layer structure 

The lattice of kyanite is pseudo-orthorhombic. A 
multiple pseudo-orthorhombic unit cell can be defined 
by 

apo = 4 a  t + b t + e t 

bpo = b t 

Cpo = C t. 

The crystalline parameters of these cells are 

a t = 7.119 A apo = 26 .82 /k  

b t = 7.847 b;o = 7.847 

c t = 5.572 %0 = 5.572 

% = 89"98° ~po = 89"98° 

fit = 101.12 flpo = 89.92 

Yt = 106.01 Ypo = 90.01. 

Fig. 4. The upper part is the st twin resulting from the introduction 
of the periodic shears {(100), ½ [0011} into the kyanite matrix of 
the lower part. The shear planes are labelled st and ft. ~ is a screw 
diad relating the a twin to the matrix. 

C 1,.24. 

w 

• !) 

I bpo 
7- 

Fig. 5. (001) idealized projection of the pseudo-orthorhombic cell. 
The stacking sequence involves four layers A, B, C and D. The 
b-glide-mirror of the B layer is the only one labelled. 



84 STACKING FAULTS AND TWINS IN KYANITE, AIzSiO 5 

Fig. 5 is a (001) projection of this pseudo-ortho- 
rhombic cell. It shows that the kyanite structure can be 
regarded as a periodic stacking of layers A, B, C and D 
(the layers are limited by the glide planes mentioned 
above). A, B, C and D refer to the four possible layer 
positions in a projection normal to [ 100]po (going from 
any layer to its two neighbours requires the vectors 
+1 _4lll l]po).  The introduction of the ½[011] t = 
½[01 lip,, shear between for instance the B and C layers 
turns the 

stacking into 

. . .  CDA B C D A  B . . .  

. . .  C D A B / A B C D  ....  

In the unfaulted crystal, the first-neighbouring layers of 
B are A and C. For the B layer that is on the left of the 
stacking fault, the first-neighbouring layers are A and 
A: that is why this fault is thought to be a low-energy 
one. 

Introduction of the periodic shears {(100), ½1011]} 
on the right of the dotted line turns the stacking 

. . . A B C D A B C  ! D A B C D A B .  . . 

into 

. . . A B C D A B C  i B A D C B A D  ....  

The latter stacking has a symmetry plane, indicated by 
the arrowed layer; this plane can only be a symmetry 
plane relating the two crystals on either side of the 
dotted line if each layer has its own symmetry plane: 
this is what Fig. 5 shows. Thus a ), twin has been 
created. One can also notice that the matrix and the y 
twin share a common layer (the arrowed C layer in the 
above example). 

Conclusions 

The slightly distorted f.c.c, oxygen sublattice of kyanite 
is not altered by ½ [001l and ½ [0111 stacking faults; as 
much can be said about mechanical twins which have 

been described by the introduction of these periodic 
stacking faults in the kyanite matrix. 

The structural models proposed for the stacking 
faults and the twins are based on the fact that the 
structure of kyanite is of the layered type. Out of the 
three considered twins leading to low-energy interfaces, 
only two have been observed (a and 7). We think that 
the fl twins have not been observed because they cannot 
be mechanically created by c dislocations. Experiments 
are now being conducted to prove this hypothesis. 

We are indebted to Professor J. Paquet (Universit6 
de Lille I) and Dr B. Lasnier (Universit+ de Nantes) for 
providing the samples of kyanite. We thank Professor 
J. C. Doukhan for very helpful discussions. 
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